Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 135(1): 227-237, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37199781

RESUMO

Dead-space-associated rebreathing of expired air and heat trapping with use of surgical masks and N95 respirators may underlie anecdotal reports of adverse symptoms associated with medical face barriers. Limited data exist directly comparing the physiological effects of masks and respirators at rest. We assessed the short-term physiological effects of both barrier types over 60 min at rest, including face microclimate temperature, end-tidal gases, and venous blood acid-base variables. We recruited 34 participants into two trials: surgical masks (n = 17) and N95 respirators (n = 17). In a seated position, participants underwent a 10-min baseline without a barrier and then wore a standardized surgical mask or dome-shaped N95 respirator for 60 min, followed by a 10-min washout. We instrumented healthy human participants with a peripheral pulse oximeter ([Formula: see text]) and a nasal cannula connected to a dual gas analyzer for measurement of the pressure of end-tidal [Formula: see text] and [Formula: see text], with an associated temperature probe for face microclimate temperature. Venous (v) blood samples were obtained at baseline and following 60-min mask/respirator wearing to assess [Formula: see text], [HCO3-]v and pHv. Compared with baseline during/following 60 min, temperature, [Formula: see text], [Formula: see text], and [HCO3-]v were mildly but significantly higher, and [Formula: see text] and [Formula: see text] were significantly lower, but [Formula: see text] was unaffected. The magnitude of effects was similar between barrier types. Temperature and [Formula: see text] returned to baseline levels within 1-2 min following removal of the barrier. These mild physiological effects may underlie reports of qualitative symptoms while wearing masks or respirators. However, the magnitudes were mild, not physiologically relevant and reversed immediately with the removal of the barrier.NEW & NOTEWORTHY Anecdotal reports suggest mild physiological effects of wearing surgical masks and/or N95 respirators, including heat trapping and rebreathing of expired air. There are limited data directly comparing the physiological effects of wearing medical barriers at rest. We found that the time course and magnitude of changes to face microclimate temperature, end-tidal gases, and venous blood gases and acid-base variables were mild in magnitude, not physiologically relevant, equivalent between barrier types, and immediately reversible on removal.


Assuntos
Respiradores N95 , Dispositivos de Proteção Respiratória , Humanos , Máscaras , Oxigênio , Gases
2.
J Appl Physiol (1985) ; 126(1): 152-159, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30462566

RESUMO

The spleen contains a reservoir of red blood cells that are mobilized into circulation when under physiological stress. Despite the spleen having an established role in compensation to acute hypoxia, no previous work has assessed the role of the spleen during ascent to high altitude. Twelve participants completed 2 min of handgrip exercise at 30% of maximal voluntary contraction at 1,045, 3,440, and 4,240 m. In a subset of eight participants, an infusion of phenylephrine hydrochloride was administered at a dosage of 30 µg/l of predicted blood volume at each altitude. The spleen was imaged by ultrasound via a 2- to 5.5-MHz curvilinear probe. Spleen volume was calculated by the prolate ellipsoid formula. Finger capillary blood samples were taken to measure hematocrit. Spleen images and hematocrit were taken both before and at the end of both handgrip and phenylephrine infusion. No changes in resting spleen volume were observed between altitudes. At low altitude, the spleen contracted in response to handgrip [272.8 ml (SD 102.3) vs. 249.6 ml (SD 105.7), P = 0.009], leading to an increase in hematocrit (42.6% (SD 3.3) vs. 44.3% (SD 3.3), P = 0.023] but did not contract or increase hematocrit at the high-altitude locations. Infusion of phenylephrine led to spleen contraction at all altitudes, but only lead to an increase in hematocrit at low altitude. These data reveal that the human spleen may not contribute to acclimatization to chronic hypoxia, contrary to its response to acute sympathoexcitation. These results are explained by alterations in spleen reactivity to increased sympathetic activation at altitude. NEW & NOTEWORTHY The present study demonstrated that, despite the known role of the human spleen in increasing oxygen delivery to tissues during acute hypoxia scenarios, the spleen does not mobilize red blood cells during ascent to high altitude. Furthermore, the spleen's response to acute stressors at altitude depends on the nature of the stressor; the spleen's sensitivity to neurotransmitter is maintained, while its reflex response to stress is dampened.


Assuntos
Aclimatação , Altitude , Baço/fisiologia , Adulto , Feminino , Força da Mão , Hemodinâmica , Humanos , Masculino , Fenilefrina , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...